Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution.
نویسندگان
چکیده
Gold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process ( approximately 2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small angle X-ray scattering (SAXS) setup. This online characterization technique enables the time-resolved investigation of the growth process of the nanoparticles from an average radius of ca. 0.8 nm to about 2 nm. To the best of our knowledge, this is the first demonstration of a continuous-flow SAXS setup for time-resolved studies of nanoparticle formation mechanisms that does not require the use of synchrotron facilities. In combination with X-ray absorption near edge structure microscopy, scanning electron microscopy, and UV-vis spectroscopy the obtained data allow the deduction of a two-step mechanism of gold nanoparticle formation. The first step is a rapid conversion of the ionic gold precursor into metallic gold nuclei, followed by particle growth via coalescence of smaller entities. Consequently it could be shown that the studied synthesis serves as a model system for growth driven only by coalescence processes.
منابع مشابه
Watching single nanoparticles grow in real time through supercontinuum spectroscopy.
A fast dark-field scattering technique capturing full broadband spectra with millisecond time-resolution enables us to monitor the growth or assembly of single nano-objects in situ and in real time. Applying this technique to study the growth of single gold nanorods, together with scanning electron microscopy and finite-difference time-domain simulations, reveals precise quantitative informatio...
متن کاملApplication of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues
ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....
متن کاملMonodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering
The synthesis of iron oxide nanoparticles (NPs) by thermal decomposition of iron precursors using oleic acid as surfactant has evolved to a state-of-the-art method to produce monodisperse, spherical NPs. The principles behind such monodisperse syntheses are well-known: the key is a separation between burst nucleation and growth phase, whereas the size of the population is set by the precursor-t...
متن کاملFormation of hollow silica nanospheres by reverse microemulsion.
Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkan...
متن کاملInteraction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters
In this paper, the optical properties of gold nanoparticles investigated. For this purpose the scattering intensity of a laser beam incident on gold nanoparticles has been studied using Mie theory and their respective curves versus different parameters such as scattering angle, wavelength of the laser beam and the size of gold nanoparticles are plotted. Investigating and comparison of the depi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 4 2 شماره
صفحات -
تاریخ انتشار 2010